Funciones Matemáticas

Funciones Matemáticas


Si una relación es reflexiva, simétrica y transitiva, se dice que es de equivalencia. Si una relación es reflexiva, antisimétrica y transitiva se dice que es de orden.

No se puede decir que una relación es creciente o decreciente, porque cada elemento puede estar relacionado con varios o con ningún elemento. De las funciones (si son de R en R) si se pueden decir si son crecientes o decrecientes (o ninguno de los 2 casos, como pasa con la función sen x).

En cuanto a la continuidad, hay que recordar que una función puede ser continua en un punto y no en otro.

La definición de función continua en un punto es la siguiente: para todo epsilon positivo existe un delta >0 de tal forma que para todo x /este a menos de delta de x0, la distancia de (f(x)a f(x0) es menor que epsilon y una función se dice continua a secas si es continua en todo a una función se dice discontinua si existe al menos un punto donde no es continua.


Dominio

En matemáticas, el dominio (conjunto de definición o conjunto de partida) de una función es el conjunto de existencia de la misma, es decir, los valores para los cuales la función está definida. Es el conjunto de todos los objetos que puede transformar, se denota o bien.



Rango

El rango de una función o relación es el conjunto de todos los valores dependientes posibles que la relación puede producir. Es la colección de todas las salidas posibles.

Son todos los valores posibles de f(x) o sea de Y. Si tenemos f(X) = sen (X) El rango va de -1 a +1.

Si F(X) = una parábola cóncava en forma de U. El rango va del vértice dala parábola hacia arriba hasta + infinito.


Diferencia y semejanza entre dominio y rango


Bibliografía:


Comentarios

Entradas más populares de este blog

Teorema de Thales: Ejemplos

CASOS DE FACTORIZACIÓN

Ecuación de la recta conociendo la pendiente y un punto de ella.