Teorema de Thales: Hechos y Explicación


Teorema de Tales: Problemas y explicación paso a paso


En la mayoría de ocasiones para encontrar la solución a un problema, primero tenemos que buscar datos relevantes.Cómo un buen detective! En geometría, es fundamental buscar aquellos elementos que nos interesen.

Dos hechos históricos
Se cuenta que el matemático Tales de Mileto (siglo VI a.C.), utilizando la semejanza de triángulos y su ingenio resolvió dos problemas nada sencillos en su época, como estos dos:

¿A qué distancia estaban los barcos enemigos?


 ¿Qué altura tenía  la gran pirámide de Keops?

Semejanza de triángulos

Ten en cuenta que dos triángulos son semejantes si tienen sus ángulos correspondientes iguales y si sus lados homólogos son proporcionales entre sí.

Triángulos semejantes trazando paralelas

También es importante que recuerdes que si en un triángulo trazas una línea paralela a cualquiera de sus lados, obtendrás dos triángulos semejantes. Mira cuantos sale ahora! Por ejemplo, en el polígono azul hay 4 triángulos semejantes:


Teorema de Tales sobre triángulos semejantes

¿Te acuerdas?
Afirma que si dos rectas cualesquiera se cortan por varias rectas paralelas, los segmentos determinados en una de las rectas son proporcionales a los segmentos correspondientes en la otra.
Dicho de otra forma.Cuando veas rectas paralelas,”córtalas” y obtendrás varias razones de semejanza.

Explicación del teorema de Tales

Cuando la ciudad de Mileto, situada en la costa griega, iba a ser atacada por los barcos enemigos, los soldados recurrieron a Tales. Necesitaban saber a que distancia se encontraba una nave para ajustar el tiro de sus catapultas.
El genio matemático resolvió el problema sacando una vara por la cornisa del acantilado, de tal forma que su extremo coincidiera con la visual del barco. Conociendo su altura (h), la del acantilado (a) y la longitud de la vara (v), calculó sin dificultad la distancia deseada (x). Parece sencillo, ¿verdad?


Observa que ahora tenemos dos triángulos semejantes, de tal forma que al ser sus lados proporcionales, podemos establecer la siguiente igualdad.
De esta forma consiguió calcular el valor de la distancia x. El resto de datos ya los conocía.





Fuente: https://soymatematicas.com/teorema-de-tales/



Comentarios

Entradas más populares de este blog

Teorema de Thales: Ejemplos

CASOS DE FACTORIZACIÓN

Ecuación de la recta conociendo la pendiente y un punto de ella.